Publications

Daniella Bar-Lev

Daniella Bar-Lev, Sagi Markovich, Prof. Eitan Yaakobi, Yonatan Yehezkeally, "Adversarial Torn - paper Codes", IEEE International Symposium on Information Theory (ISIT), 2022, pp. 2934 – 2939
abstractBibTeX

BibTeX

@INPROCEEDINGS{9834766,
author={Bar-Lev, Daniella and Marcovich, Sagi and Yaakobi, Eitan and Yehezkeally, Yonatan},
booktitle={2022 IEEE International Symposium on Information Theory (ISIT)},
title={Adversarial Torn
-
paper Codes},
year={2022},
volume={},
number={},
pages={2934-2939},
doi={10.1109/ISIT50566.2022.9834766}}
copy to clipboard
presentationvideogithub
Adir Kobovich, Orian Leitersdorf, Daniella Bar-Lev, Prof. Eitan Yaakobi, "Codes for Constrained Periodicity", International Symposium on Information Theory and Its Applications (ISITA2022), awarded
abstractBibTeX

BibTeX

@article{kobovich2022periodicity,
 title={Codes for constrained periodicity},
 author={Kobovich, Adir and Leitersdorf, Orian and Bar-Lev, Daniella and Yaakobi, Eitan},
 booktitle={IEEE International Symposium on Information Theory and its Applications (ISITA)},
 year={2022}
}
copy to clipboard
Daniella Bar-Lev, Omer Sabary, Ryan Gabrys, Prof. Eitan Yaakobi, "Cover Your Bases: How to Minimize the Sequencing Coverage in DNA Storage Systems", IEEE International Symposium on Information Theory (ISIT) 2023.
abstractBibTeX

BibTeX

@INPROCEEDINGS{10206882,
 author={Bar-Lev, Daniella and Sabary, Omer and Gabrys, Ryan and Yaakobi, Eitan},
 booktitle={2023 IEEE International Symposium on Information Theory (ISIT)},
 title={Cover Your Bases: How to Minimize the Sequencing Coverage in DNA Storage Systems},
 year={2023},
 volume={},
 number={},
 pages={370-375},
 keywords={Sequential analysis;Costs;DNA;Genetic communication;Error correction codes},
 doi={10.1109/ISIT54713.2023.10206882}}
copy to clipboard
Daniella Bar-Lev, Itai Or, Omer Sabary, Tuvi Etzion, Prof. Eitan Yaakobi, "Deep DNA Storage: Scalable and Robust DNA Storage via Coding Theory and Deep Learning", Arxiv, preprint
abstractBibTeX

BibTeX

@article{bar2021deep,
title={Deep DNA Storage: Scalable and Robust DNA Storage via Coding Theory
and Deep Learning},
author={Bar-Lev, Daniella and Orr, Itai and Sabary, Omer and Etzion, Tuvi
and Yaakobi, Eitan},
journal={arXiv preprint arXiv:2109.00031},
year={2021}
}
copy to clipboard
presentationvideogithub
Yevgeni Nogin, Daniella Bar-Lev, Dganit Hanania, Tahir Detinis Zur, Yuval Ebenstein, Prof. Eitan Yaakobi, Nir Weinberger, Yoav Shechtman, "Design of optimal labeling patterns for optical genome mapping via information theory", Bioinformatics, Volume 39, Issue 10, October 2023
abstractBibTeX

BibTeX

@article{10.1093/bioinformatics/btad601,
   author = {Nogin, Yevgeni and Bar-Lev, Daniella and Hanania, Dganit and Detinis Zur, Tahir and Ebenstein, Yuval and Yaakobi, Eitan and Weinberger, Nir and Shechtman, Yoav},
   title = "{Design of optimal labeling patterns for optical genome mapping via information theory}",
   journal = {Bioinformatics},
   volume = {39},
   number = {10},
   pages = {btad601},
   year = {2023},
   month = {09},
   abstract = "{Optical genome mapping (OGM) is a technique that extracts partial genomic information from optically imaged and linearized DNA fragments containing fluorescently labeled short sequence patterns. This information can be used for various genomic analyses and applications, such as the detection of structural variations and copy-number variations, epigenomic profiling, and microbial species identification. Currently, the choice of labeled patterns is based on the available biochemical methods and is not necessarily optimized for the application.In this work, we develop a model of OGM based on information theory, which enables the design of optimal labeling patterns for specific applications and target organism genomes. We validated the model through experimental OGM on human DNA and simulations on bacterial DNA. Our model predicts up to 10-fold improved accuracy by optimal choice of labeling patterns, which may guide future development of OGM biochemical labeling methods and significantly improve its accuracy and yield for applications such as epigenomic profiling and cultivation-free pathogen identification in clinical samples.https://github.com/yevgenin/PatternCode}",
   issn = {1367-4811},
   doi = {10.1093/bioinformatics/btad601},
   url = {https://doi.org/10.1093/bioinformatics/btad601},
   eprint = {https://academic.oup.com/bioinformatics/article-pdf/39/10/btad601/51972115/btad601.pdf},
}
copy to clipboard
Dganit Hanania, Daniella Bar-Lev, Yevgeni Nogin, Yoav Shechtman, Prof. Eitan Yaakobi, "On the Capacity of DNA Labeling", International Symposium on Information Theory (ISIT2023)
abstractBibTeX

BibTeX

@INPROCEEDINGS{10206769,
 author={Hanania, Dganit and Bar-Lev, Daniella and Nogin, Yevgeni and Shechtman, Yoav and Yaakobi, Eitan},
 booktitle={2023 IEEE International Symposium on Information Theory (ISIT)},
 title={On the Capacity of DNA Labeling},
 year={2023},
 volume={},
 number={},
 pages={567-572},
 keywords={Visualization;Biotechnology;Biological system modeling;DNA;Symbols;Genetic communication;Labeling},
 doi={10.1109/ISIT54713.2023.10206769}}
copy to clipboard
Daniella Bar-Lev, Adir Kobovich, Orian Leitersdorf, Prof. Eitan Yaakobi, "Optimal Almost-Balanced Sequences", International Symposium on Information Theory (ISIT2024)
abstractBibTeX

BibTeX

@article{ bar2024balance,
 title={ Optimal Almost-Balanced Sequences },
 author={ Bar-Lev, Daniella and Kobovich, Adir and Leitersdorf, Orian and Yaakobi, Eitan},
 booktitle={ Proceedings of the IEEE International Symposium on Information Theory (ISIT) },
 year={ 2024 }
}
copy to clipboard