
Multiple Sequence Alignment for DNA Storage Clusters 
Duna Mazzawi 

Sima Qudsi 

Butross Dallah 

Project in DNA Data Storage — 236503 

Department of Computer Science 

Technion — Israel Institute of Technology 

 
Abstract 

 

Multiple Sequence Alignment refers to the process of aligning a cluster of strands, usually protein or 

DNA, to achieve a maximal  regions of similarity. 

More specifically, given a set S of m erroneous strands of DNA with different lengths, that assumingly 

originated from one common reference, the outcome of the MSA algorithm, is to be m strands with gap 

insertions into each strand, such that all conform to a length 𝐿 ≥ max{𝑛𝑖| |𝑆𝑖| = 𝑛_𝑖}, and no index 

 0 ≤ 𝑖 ≤ 𝐿, yields a column consisting of only gaps, and the alignment maximizes the common substrings 

of the strands. MSA has been shown to be NP-complete problem. 

 

This work shows a new Sequence Alignment method, that leverage existing sequencing algorithms, in 

order to achieve a speedup of x80 over state of the art Multiple Sequencing Alignment algorithms. 

The method uses an existing pairwise alignment algorithm called FOGSAA [1], as the base of an Iterative 

Algorithm, along with two other phases. 

Further applications and Enhancements of the suggested method can further contribute to Modify the 

sequencing and alignment phases, in order to achieve a robust and efficient DNA data storage system. 

 
Introduction 

 

In our modern days, we are producing data at an exponential rate, those tremendous amounts of 

data are to be stored in digital systems that require respectively significant space and infrastructure 

maintenance, thus creating high demand on a new innovative storage system. 

DNA is an excellent medium for data storage, due to its demonstrated information density of petabytes of 

data per gram. 

The DNA storage system consist of three main phases. The first is the synthesis process which produces the 

oligonucleotides or strands that encode data, second is to store those strands in containers that are out of 

order, finally is the sequencing procedure, which is performed by reading the stored strands and 

constructing the decoded data. Such strands are usually of lengths in the range of 250 nucleotides, however, 

from each strand, millions of copies are synthesized to be stored in the containers. Those copies are read 

with errors (substitution, insertion, deletion), caused by all phases. Therefore, after receiving a cluster (set 

of reads of the same origin of copies), a sequence alignment process is needed in order to achieve a 

reconstruction of the original strand. 

Multiple sequence alignment (MSA) is a classic problem in bioinformatics where the goal is to 

align several long DNA sequences under the assumption that all of them represents different species in an 



evolutionary chain. From the resulting MSA, phylogenetic analysis is conducted. Since MSA has been 

developed from the bioinformatics perspective, it is suitable for long genes and protein sequences, 

furthermore it did not require high efficiency rates. 

 For the purpose of customizing the MSA algorithm in the DNA data storage field, and since the 

type of DNA strands used currently differ from genes, moreover since our demands of those algorithms 

require high efficiency and low time and space complexity, in order to compete with existing data storage 

systems, adjustments and optimizations to the existing algorithms has to be done. 

This work, studies the different existing MSA algorithms, compares them, and suggest an optimizing run 

complexity algorithm, an algorithm consisting of a phase of iterative alignment with FOGSAA [1], aligning 

all strands to one prediction of a reference strand, within the second phase is of a dynamically chosen 

number of iterations, where corrections are made to the predicted reference, based on the results of the 

alignment and the majority vote, then once again the alignment is done to the original cluster with the 

corrected reference. 

Semantics: 

Given m sequences 𝑆𝑖, 1 ≤ 𝑖 ≤ 𝑚, as in the form bellow: 

𝑆 =

{
  
 

  
 

𝑆1 = (𝑆11, 𝑆12, … , 𝑆1𝑛1)

𝑆2 = (𝑆21, 𝑆22, … , 𝑆2𝑛2)
.
.
.

𝑆𝑚 = (𝑆𝑚1, 𝑆𝑚2, … , 𝑆𝑚𝑛𝑚)

 

A multiple sequence alignment of this set, is resulted by inserting any amount of gaps needed into each 

strand 𝑆𝑖 until all strands confront to a common length 𝐿 ≥ max{𝑛𝑖| |𝑆𝑖| = 𝑛_𝑖}, and no column is full of 

gaps. 

We have observed that the different existing algorithms, rely on a naïve pairwise sequence alignment 

dynamic algorithm. 

When customizing the problem to our DNA data storage systems, and since we know the error rates 

of the different consisting phases of the system, we can construct a more informed pairwise alignment 

algorithm, starting with the basic two strand alignment. 

 

To refer to the new problem, we will give some denotation: 

𝑠𝑡𝑒𝑝(𝑆𝑖𝑥 , 𝑆𝑗𝑦):  

 𝑚𝑎𝑡𝑐ℎ(𝑆𝑖𝑥 , 𝑆𝑗𝑦): 𝑡𝑤𝑜 𝑙𝑒𝑡𝑡𝑒𝑟𝑠 𝑚𝑎𝑡𝑐ℎ 𝑎𝑛𝑑 𝑤𝑒𝑟𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 

𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ(𝑆𝑖𝑥 , 𝑆𝑗𝑦): 𝑡𝑤𝑜 𝑙𝑒𝑡𝑡𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 𝑑𝑜𝑛
′𝑡 𝑚𝑎𝑡𝑐ℎ 𝑤𝑒𝑟𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 

𝑔𝑎𝑝1(𝑆𝑖𝑥 , 𝑆𝑗𝑦): 𝑎 𝑔𝑎𝑝 𝑤𝑎𝑠 𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑠𝑡𝑟𝑎𝑛𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥 𝑖 

𝑔𝑎𝑝2(𝑆𝑖𝑥 , 𝑆𝑗𝑦): 𝑎 𝑔𝑎𝑝 𝑤𝑎𝑠 𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑡𝑟𝑎𝑛𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥 𝑗 



In other words, 𝑚𝑎𝑡𝑐ℎ(𝑆𝑖𝑥 , 𝑆𝑗𝑦)  means that we assume that no error has appeared at this index, 

𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ(𝑆𝑖𝑥 , 𝑆𝑗𝑦) denotes a substitution that happened at index j, and inserting a gap at the first strand 

indicates that an insertion of 𝑆𝑖𝑥 occurred in the second strand, and on similar basis, inserting a gap into the 

second strand suggests that a deletion of the base 𝑆𝑗𝑦 occurred. 

Therefore, we can give preferences to these choices based on the error rates given, we give penalties to each 

choice of possible step, in order to prioritize the most likely step, denote: 𝑐ℎ𝑜𝑖𝑐𝑒𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝑓(𝑟𝑎𝑡𝑒), as the 

penalty score given to each one of the possible choices, calculated as a monotone decreasing function of 

the given error rate. And the goal is to minimize this summery of penalties: 

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = min {∑𝑐ℎ𝑜𝑖𝑐𝑒𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑆𝑖𝑥, 𝑆𝑗𝑥)}

𝐿

𝑖

 

Note that, since the rate of not erroneous indexes is the highest, and since the function is decreasing, we 

obtain a minimal penalty, by maximizing the matching indices. 

 

Methods 

 

The naïve approach to solve the problem is a dynamic program that identify the globally optimal 

solution. For n sequences of length L, the naïve method requires n-dimensional matrix, equivalent to the 

matrix in the pairwise sequence alignment, and therefore the complexity increases exponentially, 𝑂(𝐿𝑛). 

Since, such complexity is not compatible with the large number of sequences and our current computational 

abilities, many different algorithms were developed, trying to obtain a sufficient alignment with efficient 

complexity. 

To overcome this problem, different heuristic approaches have been developed, resulting in a huge quantity 

of programs using fundamentally different strategies [2]. The traditional and most common approach has 

been the progressive alignment method, where the multiple alignment is built up gradually by aligning the 

closest sequence first and successively adding the more distant ones. Many alignment programs are based 

on this method, such as MULTALIGN [3], CLUSTALW [4], KALIGN [5], MUSCLE [6], T-COFFE [7] 

and many others, illustrated in the Figure. 

 

 

 

 

 

 

 

T-coffe 

 

Muscle 

CluskalW 



Materials and Experiments 

 

1. Customizing the pairwise alignment: 

What all of those MSA algorithms have in common, is that the cornerstone in the algorithm, is pairwise 

alignments algorithms, that are done in most of the phases in those algorithms. Furthermore, all these 

algorithms use the basic dynamic pairwise alignment method (Needleman-Wunsch[8]) which has running 

complexity of 𝑂(𝑛 ∗ 𝐿), where n is the number of strands and 𝐿 is each strand’s length. 

Therefore, to optimize the run time to our problem, we can search for more optimal running complex 

algorithms, which in this case, might cost us some accuracy loss, but since in our data storage systems, 

much more layering of decoding and error corrections are applied, we can afford to decrease the accuracy 

of the alignment.  

One interesting pairwise algorithm we noticed named FOGSAA (Fast Optimal Global Sequence Alignment 

Algorithm) [1], Which functions as a tree search algorithm, such that at each step the developed node is 

chosen base on the optimal score (minimal penalty), the tree search includes branch pruning and is more 

informed than the dynamic algorithm, thus it yields a great improvement considering time and space 

complexity. 

FOGSAA aligns a pair of nucleotide sequences faster than any optimal global alignment method including 

the widely used Needleman-Wunsch (NW) algorithm. FOGSAA is applicable for all types of sequences, 

with any scoring scheme and with or without affine gap penalty. Compared to NW, FOGSAA achieves a 

time gain of (70-90) % for highly similar nucleotide sequences (> 80% similarity) and (54-70) % for 

sequences having (30-80) % similarity. For other sequences, it terminates with an approximate score. 

 

[Comparison of the running time of FOGSAA and NW on different strand lengths, strands were simulated 

with Ilumina technology’s error rates, as a result we found that FOGSAA is significantly faster than 

Needleman Wunsch.] 

 



2. Evaluating The Improved FOGSAA Algorithm:    

To further illustrate the complexity improvements, and compare FOGSA to the naïve dynamic 

algorithm, we need to define evaluation metrics that can measure the alignment’s accuracy.  

2.1.  Defining evaluation Metrics: 

Given a reference strand denoted by S1, and an erroneous copy S2. Denote S3 and S4 the two 

strands after the alignment, and let N be their length.  We introduce the Metrics: 

 Distance from Lavenstein (DFL) Metric:   

𝐷𝐹𝐿(𝑆1, 𝑆2, 𝑆3, 𝑆4) = [𝑁 − 𝑐𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑆3, 𝑆4)] − 𝑑𝑙𝑒𝑣𝑒𝑛𝑠𝑡𝑒𝑖𝑛(𝑆1, 𝑆2) 

In other words, DFL computes the distance between the minimal edits needed to obtain S1 from 

S2, and the number of not matched indices which indicates the number of “errors” we assumed 

appeared (insertion, substitution, deletion). 

 LCS Distance (LCSD) Metric:  

𝐿𝐶𝑆𝐷(𝑆1, 𝑆2, 𝑆3, 𝑆4) = 𝐿𝐶𝑆(𝑆1, 𝑆2) − 𝑐𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑆3, 𝑆4) 

The difference between LCS length, which is the length of the longest common subsequent, and 

the number of matches obtained in the alignment. This metric indicates how many possible matches 

we have missed. 

 SCS Distance (SCSD) Metric:  

𝑆𝐶𝑆𝐷(𝑆1, 𝑆2, 𝑆3, 𝑆4) = 𝑁 − 𝑆𝐶𝑆(𝑆1, 𝑆2) + 𝑐𝑜𝑢𝑛𝑡𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ(𝑆3, 𝑆4) 

The difference between the length of the aligned sequence, and the shortest common super 

sequence length, which indicates the unnecessarily added gaps, we also subtracted the number of 

mismatches, because when a substitution of one base occurs, it adds 2 bases to the SCS, but in the 

alignment they should be mismatched and not considered as two gaps. 

2.2.  Comparisons: 

 To reveal the correlation between the different error type rates and the Metrics defined, in 

addition to evaluating the algorithm’s accuracies, an experiment was conducted, where 10 files 

that contain an erroneous cluster of size 1000 with strands of length 250 base, each with 

different error rates, were simulated by the simulator. We ran the two algorithms, and 

computed the average metric value for each file, and so each graph describes the average metric 

value affected by the error rates. 

 

 

 

 

 

 

 

 



 

[The graph describes the average time and the metrics for 10 different clusters, comparing between the alignment with FOGSAA and Needleman 

Wunsch Algorithms, the x axes describes the deletion error rate, when the other error rates are 0. We can observe that the average metrics values are 

increasing with the increase of the deletion rate, and we can observe that the deletion rate affects mainly the SCS distance and LCS distance. However, 

what can be noticed is that throughout all of the alignments, FOGSAA was significantly faster of approximately x90%] 

 

 

 

 

 

 

 

 

[similar to the previous graph, but the x axis is the insertion error rate] 

 

 

 

 

 

 

 

 

[Similar to previous graphs, with the substitution error rate as the x axis, here we notice that the substitution rate affected NW algorithm significantly with the LCS 

and SCS metric] 

 Second, to measure the accuracy of FOGSAA alignment, to a more realistic error values that 

are common to the current sequencing technologies, we conducted a similar experiment, where 

we changed the total sum of error rates as axis x. In the first figure, the different error types 

rates were divided equally, whereas in the second, they were divided randomly. 

 

 

 

 

 

 

2.3. Conclusions: 

- After observing the resulting graphs, we can conclude that FOGSAA alignment is significantly 

faster the NW, however, it comes in costs of accuracy, concerning the optimality of the alignment.  

- In the second experiences, we can see that within the range of lower error rates that are 

correspondent to the current technologies, the accuracy of both algorithms is perfect relative to our 

pre-defined metrics. 



- In addition, we have noticed that both the SCSD and LCSD graphs coincide, and decided to drop 

the SCSD metric. 

Claim 1: LCSD is equal to SCSD. 

Proof:  Let S1, S2 be two strands of lengths n, m respectively, and let S1’, S2’ be the two strands after the 

alignment of length N. 

Denote 𝑚𝑎𝑡𝑐ℎ(𝑆1′, 𝑆2′),𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ(𝑆1′, 𝑆2′) as the number of matched/mismatched letters in the 

aligned strands.  

Similarly let 𝑔𝑎𝑝𝑠(𝑆1′), 𝑔𝑎𝑝𝑠(𝑆2′) as the number of gaps inserted into S1 and S2 to create S1’, 

S2’ respectively. 

First of all, we deduct the relation between LCS and SCS, for two input sequences, an SCS can be 

formed from a LCS. By simply inserting the non-LCS symbols into the LCS sequence preserving 

their original order. 

For example, the longest common subsequence of X[1..m]=abcbdab and Y[1..n]=bdcaba is 

Z[1..L]=bcba. we obtain a shortest common supersequence U[1..S]=abdcabdab.  

Thus, |𝐿𝐶𝑆| + |𝑆𝐶𝑆| = 𝑚 + 𝑛 (1) holds for any two input sequences. 

Secondly, the following equations hold: 

 𝑁 = 𝑚𝑎𝑡𝑐ℎ(𝑆1′, 𝑆2′) + 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ(𝑆1′, 𝑆2′) + 𝑔𝑎𝑝𝑠(𝑆1′) + 𝑔𝑎𝑝𝑠(𝑆2′)(2) 

 𝑁 = 𝑛 + 𝑔𝑎𝑝𝑠(𝑆1′),𝑁 = 𝑚 + 𝑔𝑎𝑝𝑠(𝑆2′)(3) 

→ 𝑚 = 𝑚𝑎𝑡𝑐ℎ(𝑆1′, 𝑆2′) + 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ(𝑆1′, 𝑆2′) + 𝑔𝑎𝑝𝑠(𝑆1′),

𝑛 = 𝑚𝑎𝑡𝑐ℎ(𝑆1′, 𝑆2′) + 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ(𝑆1′, 𝑆2′) + 𝑔𝑎𝑝𝑠(𝑆2′) 

Based on the Definitions of LCSD and SCSD: 

𝑆𝐶𝑆𝐷 = 𝑁 − |𝑆𝐶𝑆| + 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ(𝑆1′𝑆2′)  →1 

𝑆𝐶𝑆𝐷 = 𝑁 −𝑚 − 𝑛 + |𝐿𝐶𝑆| +𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ(𝑆1′, 𝑆2′) →2 

𝑆𝐶𝑆𝐷 = 𝑚 + 𝑔𝑎𝑝𝑠(𝑆2′) − 𝑚 − 𝑛 + |𝐿𝐶𝑆| + 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ(𝑆1′, 𝑆2′) →3 

𝑆𝐶𝑆𝐷 = |𝐿𝐶𝑆| + 𝑔𝑎𝑝𝑠(𝑆2′) − 𝑚𝑎𝑡𝑐ℎ(𝑆1′, 𝑆2′) − 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ(𝑆1′, 𝑆2′) − 𝑔𝑎𝑝𝑠(𝑆2′) + 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ(𝑆1′, 𝑆2′) 

𝑆𝐶𝑆𝐷 = |𝐿𝐶𝑆| −𝑚𝑎𝑡𝑐ℎ(𝑆1′, 𝑆2′) = 𝐿𝐶𝑆𝐷 ∎ 

3. Customizing Multiple Sequence Alignment: 

Sequence Alignment in the DNA-Storage domain, differs from the use of Sequence Alignment in the 

Biological domain, and so to customize the Algorithm such that it answers to our assumptions and demands, 

we first will list the preliminary assumptions: 

For an encoded DNA strand that was stored and read, we usually assure some characteristics: 



 The error rates of each type of error, (substitution, insertion, deletion) relevant to the sequencing 

technology, is known and given. 

 The reads of a strand undergo reconstruction algorithms before the MSA phase. 

 The strand is GC-balanced. 

 The strand does not include long runs of the same base. 

Utilizing these assumptions in our MSA algorithm, can optimize the complexity and build a more 

unformatted algorithm. 

Integrating the above assumptions into FOGSAA pairwise alignment algorithm: 

  Since FOGSAA is a tree search algorithm that prioritizes the branches with maximal score, we 

built a decreasing monotone function that provides negative penalty values to each error type, 

respective to the error type rate subordinate to the used sequencer technology. 

 We assume that the reference strand is obtained as a results of a given reconstruction algorithm, or 

some other estimator, this can be done due to the knowledge that the reads were all originated from 

the same encoded strand, in contrary to the biological use of the alignment methods, and therefore 

we have the advantage of having a predicted reference strand. We utilized this advantage, by 

creating an iterative pairwise algorithm, that aligns every read to the reference, and therefore we 

have n (number of reads) alignments of strands, which is a huge improvement compared to the 

progressive methods previously used. 

 As for the other characteristics provided, we used them in eliminating strands that did not abide, 

on the bases that they are very erroneous or were mistakenly added to the cluster. 

  

The Model 

 

1. MSA Iterative algorithm based on the Improved FOGSAA: 

The algorithm is divided into two phases: 

Phase 1:  

Given the erroneous cluster and an estimated reference, we align the cluster iteratively to the 

estimated reference strand given. 

Reference evaluation and correction phase: 

After we obtain the cluster aligned, we can conduct an evaluation of the provided reference based 

on the majority vote of the alignment. 

Given the aligned cluster, we iterate on the reference indexes, and observe the majority’s vote on 

the correctness of this base. 

 The majority has a gap in this index, it indicates that this base was an insertion error 

in the reference, therefore we can delete it. 



 The majorities vote is a mismatch with the majority of the base x, then this indicates 

that a substitution has occurred in the reference, and therefore we can correct the base 

to x. 

 The majority decided to insert a gap in the reference at this index, (we observe that 

by updating a histogram that counts the number of different strands that indicated that 

a gap is to be added in the reference at this index), then it indicates that a deletion has 

occurred in the reference and therefore we can insert the base that appears in the 

majority’s vote. 

The evaluation of the reference is calculated as the number of indexes that the majority has voted 

for an error occurring in the reference, divided by the reference’s length. 

The reference evaluation function is called, and if the evaluation appears to be under a pre-

defined value, then phase two proceeds.  

Phase 2: 

The reference is corrected by the above explained function, and a second round of iterative 

pairwise alignment to the new reference is performed. 

This phase is conducted 𝑘 times, where k is a pre-defined parameter. 

In order to find the most promising 𝑘 , we conducted a tuning process which is described later on. 

Note that: In order to fairly compare the algorithm to other MSA technologies, and since they 

don’t utilize the estimated reference, we decided to add a feature, that can conduct the same 

algorithm, but instead of starting with the given estimated reference, only the original strand 

length is needed, we randomly choose from the strands in the cluster that have the same length. 

The algorithm is linked in the additional information. 

2. Tuning process 

As described above, our algorithm is constructed of two phases, where phase 2 aims to improve 

the alignment by improving the reference an repeating the alignment once again, this phase is 

repeated k times.  

In order to decide the best value to assign to k, we conduct an experiment where we ran our 

model several times on 5 clusters, where each time we assign a different value for k, and then we 

evaluate the resulted alignment. 

 

 

 

 

 

 

 

 

 

 



[In the first diagram, a higher score indicates a better alignment, and we can see that our model received the highest scores in for k = 3, 

the same applies to the third diagram, with k = 3 achieving relatively the best results. Whereas, the second diagram, lower values indicate 

better results, which were received in k = 3]  

As a result, we decided to proceed out work with k = 3.  

Note: we limited the values of k to {1,2,3,4,5} and didn't experiment bigger values because we 

want the algorithm to be fast, while using higher values can slow down our model.  

3. Defining Metrics for evaluating the MSA algorithm: 

To assess the performance and to evaluate the MSA quality, there was a need to find or create 

appropriate metrics that could reflect the alignment efficiency. 

Famous metrics that are widely used to estimate the quality are the sum-of-pairs score (SPS) 

which is calculated such that the score increases with the number of sequences correctly aligned. 

The column score (CS) is a binary score given to each column in case it was fully identical to all 

the strands. The last metric we developed using the distance-from-Levenstein metric (DFLS) we 

showed earlier but calculated for each two strands in the given cluster, we expect that lower 

scores in this metric to be better because it indicates that the alignment results are not far from the 

edit distance between the strands. 

 sum-of-pairs score (adjusted): 

Suppose we have a cluster of N aligned sequences, each sequence consists M bases. 

For each pair of sequences 𝑠𝑖, 𝑠𝑗, and each index 𝑘, 𝑘𝜖[𝑀], we compare 𝑠𝑖𝑘 𝑤𝑖𝑡ℎ 𝑠𝑗𝑘 

based on the comparison we assign a value as follows : 

𝑣𝑎𝑙(𝑠𝑖𝑘, 𝑠𝑗𝑘) =  

{
 

 
1                                                     𝑖𝑓 𝑠𝑖𝑘 = 𝑠𝑗𝑘  

−1   𝑠𝑖𝑘 ≠ 𝑠𝑗𝑘 , 𝑎𝑛𝑑 𝑛𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒𝑚 𝑖𝑠 𝑎 𝑔𝑎𝑝 

−1                        𝑜𝑛𝑙𝑦 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒𝑚 𝑖𝑠 𝑎 𝑔𝑎𝑝
−2                                          𝑖𝑓 𝑏𝑜𝑡ℎ 𝑎𝑟𝑒 𝑔𝑎𝑝𝑠

 

 

Thus the SPS is: 

𝑆𝑃𝑆 =  ∑ ∑ 𝑣𝑎𝑙𝑢𝑒(𝑠𝑖𝑘 , 𝑠𝑗𝑘)
𝑀

𝑘=1

𝑁

𝑖≠𝑗
 

 

 column score (adjusted): 

Given a cluster of N aligned sequences, each sequence consists M bases. 

For each index 𝑘𝜖𝑀, we assign value 𝐶𝑖 = 1 if all sequences agree in that index, 

otherwise 𝐶𝑖 = 0. 

 

𝐶𝑆 =  ∑𝐶𝑖

𝑀

𝑘=1

 

 

 distance-from-Levenstein Sum: 

Given a cluster of N sequences before and after the alignment, for each pair of sequences 

𝑠𝑖, 𝑠𝑗we calculate the 𝐷𝐹𝐿(𝑠𝑖, 𝑠𝑗) described in the pairwise alignment comparison section, 

and thus: 



𝐷𝐹𝐿𝑆 =∑𝐷𝐹𝐿(𝑠𝑖, 𝑠𝑗)

𝑀

𝑖≠𝑗

 

4. Comparing MSA algorithms 

We have been provided by the project mentors a several JSON files that contain clusters, for each 

JSON file we aligned the strands cluster using three different MSA algorithms, Clustal Omega 

[4], MUSCLE [6], MAFTT [9] and the model described in this article. 

The comparison was made using the metrics we described earlier. We found that our Model 

scored significantly better in all of the clusters in all the metrics. 

[In the first diagram, a higher score indicates a better alignment, and we can see that our model received the highest scores in for all the 

clusters, the same applies to the third diagram. Whereas, the second diagram, lower values indicate better results.]  

5. Conclusion 

In this article we present a new Multiple Sequence Alignment algorithm that is based on a 

pairwise improved algorithm, FOGSAA [1]. We identified the differences between the general 

MSA problem, and the specific MSA problem in the DNA Storage systems, which allowed us to 

establish assumptions that can be utilized to customize the algorithm to fit our demands. Based on 

these assumptions we were able to construct a new Model that is iterative, which replaces the 

current progressive algorithms, and outperforms them. 

 

Future Improvement Suggestion 

 

For the future, we are planning to use the Artificial Intelligence Algorithms in order to improve our 

alignment. Since we are looking at our problem as a search problem, Our current model is a blind search 

algorithm which is similar to Uniform Cost Search Algorithm, it uses the backward cost 𝑔() as a function 

of error rates. Our ambitions are towards upgrading the algorithm into a combination of the current UCS 

and an informed greedy algorithm, which uses a forward cost function, aka A*. 



A possible heuristic we thought about is the difference between the edit distance and the non-matching 

steps done up until the current state, or zero if the value is negative. Note, that the suggested heuristic is 

admissible, (1) assume that an actual alignment path received a value that is less than the heuristic, then the 

total number of none-matching steps is less than the edit distance, which is by definition the minimum 

number of operations required to transform one string into the other, in contradiction. (2) By definition of 

the heuristic it cannot receive a negative value.  

Therefore, since it is proven that A* finds the optimal solution path, when given an admissible heuristic, 

it is promising to explore this domain. 

 

References 

 

 [1] Angana Chakraborty & Sanghamitra Bandyopadhyay, FOGSAA: Fast Optimal Global Sequence 

Alignment Algorithm, 29 April 2013. 

[2] Julie D. Rhompson, Frederic Plewaniak and Oliver Poch, A comprehensive comparison of multiple 

sequence alignment programs. 

[3] Barton,G.F. and Sternberg,G.E. MULTAKALIGN, 1987, J. Mol. Evol. 

[4] Paula Hogeweg; Des Higgins; European Molecular BiologyLaboratory, ClustalW: Widespread 

Multiple sequences alignments program, 2008. 

[5] Timo Lassmann and Erik LL Sohnhammer, Kalign – an accurate and fast multiple sequence alignment 

algorithm, 2005. 

[6] Robert C. Edgar, MUSCLE: multiple sewuence alignment with high accuracy and high thoughput, 

2004. 

[7] Cedric Notredame, Desmond G. Higgins and Jaap Heringa, T-COFFEE: A Novel Method for Fast and 

Accurate Multiple Sequence Alignment. 

[8] Needleman, S.B. and Wunsch, C.D. (1970) A General Method Applicable to the Search for 

Similarities in the Amino Acid Sequence of Two Proteins. Journal of Molecular Biology, 48, 443-453. 

[9] Katoh, Kazutaka & Rozewicki, John & Yamada, Kazunori. (2017). MAFFT online service: Multiple 

sequence alignment, interactive sequence choice and visualization. 

 

Additional Information 

 

Link to our MSA Algorithm Model: 

https://github.com/duna-m/FogsaaBasedMSA 

 

https://github.com/duna-m/FogsaaBasedMSA

